Shigefumi Mori

Born: 23 February 1951 in Nagoya, Japan

Click the picture above
to see two larger pictures

 Previous (Chronologically) Next  Main Index
 Previous  (Alphabetically) Next  Biographies index

Version for printing

Shigefumi Mori attended Kyoto University and he received his B.A. from there in 1973 and his M.A. in 1975. In that year he was appointed as an assistant at Kyoto and studied there for his doctorate under Masayoshi Nagata's supervision. He was awarded his doctorate in 1978 for a thesis The endomorphism rings of some abelian varieties.

After the award of his Ph.D., Mori remained as an assistant at Kyoto until 1980 when he was appointed as a lecturer in mathematics at the University of Nagoya. He was promoted to assistant professor in 1982 and, in 1988, to full professor. In 1990 Mori returned to a chair at Kyoto University.

During the years from 1977 to 1988 he spent much time in the United States despite the positions he held in Japan. He was visiting professor at Harvard during 1977-1980, the Institute for Advanced Study in 1981-82, Columbia University 1985-87 and the University of Utah for periods during 1987-89 and again during 1991-92.

Mori works on algebraic geometry. To put his work in perspective we should note that, as in many areas of mathematics, classification is the ultimate aim. As Hironaka writes in [4]:-

... to classify algebraic varieties has always been a fundamental problem of algebraic geometry and even an ultimate dream of algebraic geometers.

Major progress was made on classifying algebraic surfaces during the first part of the 20th century by the great Italian algebraic geometers led by Castelnuovo, Enriques and Severi. Progress in this line continued with Zariski's contribution during the 1950s, followed by Kodaira's work in the following decade. Mori's work achieved a remarkable continuation of classification efforts in algebraic geometry and in many ways provides a fitting chapter in the progress of algebraic geometry through the 20th century.

Mori was awarded a Fields Medal at the 1990 International Congress which was held in the city in which he had studied as a student, namely Kyoto in Japan. He received this Medal for some remarkable work over a 12 year period. He worked on algebraic manifolds with ample tangent bundles and was the first to prove the Hartshorne conjecture in 1978. This conjecture, posed in 1970, claimed that projective spaces are the only smooth complete algebraic varieties with ample tangent bundles.

In 1981 Mori completed the classification of Fano 3-folds and worked on the minimal model programme.

Hironaka, speaking of Mori's work which led to the award of the Fields Medal said [4]:-

The most profound and exciting development in algebraic geometry during the last decade or so was the Minimal Model Program or Mori's Program in connection with th classification problems of algebraic varieties of dimension three. Shigefumi Mori initiated the program with a decisively new and powerful technique, guided the general research direction with some good collaborators along the way, and finally finished up the program by himself overcoming the last difficulty.

Mori has received many other awards for his outstanding work. Before receiving the Fields Medal in 1990 he had already been awarded the Japan Mathematical Society's Yanaga Prize in 1983, the Chunichi Culture Prize in 1984. In 1988, jointly with Y Kawamata, he received a Prize from the Japan Mathematical Society for:-

...outstanding work in the minimal model theory for algebraic varieties.

In 1989 he received the Inoue Prize for:-

...outstanding work in the theory of higher dimensional algebraic varieties and in particular for the proof of existence of minimal models for 3-dimensional algebraic varieties.

The same year as he was awarded the Fields Medal, in 1990, Mori was awarded the Cole Prize in Algebra from the American Mathematical Society. The citation for the award states [8]:-

The committee unanimously recommends that the 1990 Cole Prize in Algebra be awarded to Shigefumi Mori for his outstanding work on the classification of algebraic varieties. Mori took the decisive steps over a ten-year period in extending the classical theory of algebraic surfaces to dimension three: prior to Mori's breakthroughs this problem seemed out of reach. Mori's beautiful work also makes major inroads into the problem in higher dimensions.

In 1998 Mori published the monograph Birational geometry of algebraic varieties which he coauthored with János Kollár. Mark Gross writes in a review:-

The minimal model program, or Mori's program, was one of the great successes of algebraic geometry in the 1980s. The basic goal was to understand the birational geometry of threefolds in a way analogous to the birational theory of surfaces. This approach got its start with work of Mori ... The book under review, written by two of the leaders in the field, is a comprehensive treatment of the minimal model program. ...

Mori continues to publish important papers such as: Rational curves on algebraic varieties (2000), (with O Fujino) A canonical bundle formula (2000), Semistable extremal neighborhoods (2002), (with V Alexeev) Bounding singular surfaces of general type (2003), and (with Y Prokhorov) Q-conic bundles (2008).

Article by: J J O'Connor and E F Robertson

Click on this link to see a list of the Glossary entries for this page

List of References (9 books/articles)

Mathematicians born in the same country

Honours awarded to Shigefumi Mori
(Click below for those honoured in this way)
Speaker at International Congress1990
AMS Cole Prize in Algebra1990
Fields Medal1990
AMS Cole Prize for algebra1990

Cross-references in MacTutor

  1. Chronology: 1970 to 1980

Other Web sites
  1. Encyclopaedia Britannica
  1. Mathematical Genealogy Project

 Previous (Chronologically) Next  Main Index
 Previous  (Alphabetically) Next  Biographies index
History Topics
 Societies, honours, etc.
Famous curves
Time lines Birthplace maps Chronology  Search Form
Glossary index Quotations index Poster index
Mathematicians of the day Anniversaries for the year

JOC/EFR September 2009
Copyright information
School of Mathematics and Statistics
University of St Andrews, Scotland
The URL of this page is: