References for: Mathematics and art - perspective


  1. K Andersen, Brook Taylor's work on linear perspective. A study of Taylor's role in the history of perspective geometry. Including facsimiles of Taylor's two books on perspective (New York, 1992).
  2. J V Field, The invention of infinity : Mathematics and art in the Renaissance (Oxford, 1997).
  3. M Kemp, The science of art (New Haven, 1992).
  4. J-H Lambert, Essai sur la perspective (août 1752) (Coubron, 1982).

  1. K Andersen, Some observations concerning mathematicians' treatment of perspective constructions in the 17th and 18th centuries, in Mathemata (Wiesbaden, 1985), 409-425.
  2. K Andersen, Ancient roots of linear perspective, in From ancient omens to statistical mechanics (Copenhagen, 1987), 75-89.
  3. K Andersen, Desargues' method of perspective : its mathematical content, its connection to other perspective methods and its relation to Desargues' ideas on projective geometry, Centaurus 34 (1) (1991), 44-91.
  4. K Andersen, Perspective and the plan and elevation technique, in particular in the work by Piero della Francesca, in Amphora (Basel, 1992), 1-23.
  5. K Andersen, Stevin's theory of perspective: the origin of a Dutch academic approach to perspective, Tractrix 2 (1990), 25-62.
  6. R Bkouche, La naissance du projectif : de la perspective à la géométrie projective, in Mathématiques et philosophie de l'antiquité à l'âge classique (Paris, 1991), 239-285.
  7. C D Brownson, Euclid's Optics and its compatibility with linear perspective, Arch. Hist. Exact Sci. 24 (3) (1981), 165-194.
  8. M Daly Davis, Luca Pacioli, Piero della Francesca, Leonardo da Vinci : between "proportionality" and "perspective" in the Divina proportione (Italian), in Between art and science : Piero della Francesca (Italian), Arezzo-Sansepolcro, 1992 (Venice, 1996), 355-362.
  9. J W Dauben, The art of Renaissance science: Galileo and perspective, a video-cassette (Providence, RI, 1991).
  10. J Elkins and L da Vinci, Did Leonardo develop a theory of curvilinear perspective? Together with some remarks on the "angle" and "distance" axioms, J. Warburg Courtauld Inst. 51 (1988), 190-196.
  11. J V Field, Giovanni Battista Benedetti on the mathematics of linear perspective, J. Warburg Courtauld Inst. 48 (1985), 71-99.
  12. J V Field, Linear perspective and the projective geometry of Girard Desargues, Nuncius Ann. Storia Sci. 2 (2) (1987), 3-40.
  13. J V Field, Perspective and the mathematicians : Alberti to Desargues, in Mathematics from manuscript to print, 1300-1600, Oxford, 1984 (New York, 1988), 236-263.
  14. J V Field, Piero della Francesca and the "distance point method" of perspective construction, Nuncius Ann. Storia Sci. 10 (2) (1995), 509-530.
  15. J V Field, R Lunardi and T B Settle, The perspective scheme of Masaccio's Trinity fresco, Nuncius Ann. Storia Sci. 4 (2) (1989), 31-118.
  16. A Flocon, Wentzel Jamnitzer : Perspectiva corporum regularium, in Sciences of the Renaissance, Tours, 1965 (Paris, 1973), 143-151.
  17. P Freguglia, De la perspective à la géométrie projective : le cas du théorème de Desargues sur les triangles homologiques, in Entre mécanique et architecture/Between mechanics and architecture (Basel, 1995), 89-100.
  18. P S Jones, Brook Taylor and the mathematical theory of linear perspective, Amer. Math. Monthly 58 (1951), 597-606.
  19. W R Knorr, On the principle of linear perspective in Euclid's Optics, Centaurus 34 (3) (1991), 193-210.
  20. A Pucci, A mathematico-esthetic itinerary : from perspective to projective geometry, Quad. Ric. Didatt. No. 10 (2001), 63-76.
  21. H Ratsimba-Rajohn and Th Bautier, Perspective conique et géométrie dans l'espace : F. Brunelleschi-aspects historiques, épistémologiques et didactiques, in Séminaires de mathématiques. Science, histoire, société, Rennes, 1984 (Rennes, 1984), 1-4.
  22. A Sarounová, Geometry and painting : The origins of linear perspective (Czech), Pokroky Mat. Fyz. Astronom. 40 (3) (1995), 130-150.
  23. R Tobin, Ancient perspective and Euclid's Optics, J. Warburg Courtauld Inst. 53 (1990), 14-41.
  24. V Valerio, Projective knowledge and perspective of lines in the works of Ptolemy and in late Hellenistic culture (Italian), Nuncius Ann. Storia Sci. 13 (1) (1998), 265-298.
  25. K Veltman, Piero della Francesca and the two methods of Renaissance perspective, in Between art and science : Piero della Francesca (Italian), Arezzo-Sansepolcro, 1992 (Venice, 1996), 407-419.

JOC/EFR January 2003

MacTutor History of Mathematics