References for Heron of Alexandria


  1. A G Drachmann, M S Mahoney, Biography in Dictionary of Scientific Biography (New York 1970-1990).
    See THIS LINK.
  2. Biography in Encyclopaedia Britannica.
    http://www.britannica.com/biography/Heron-of-Alexandria

    Books:

  3. M Cantor, Vorlesungen über Geschichte der Mathematik I (Leipzig, 1908).
  4. A G Drachmann, Ktesibios, Philon, and Heron, a Study in Ancient Pneumatics (1948).
  5. T L Heath, A history of Greek mathematics I, II (Oxford, 1931).
  6. J L Heiberg, Heronis Alexandrini Opera quae supersunt omnia (Leipzig, 1912).
  7. O Neugebauer, A history of ancient mathematical astronomy (New York, 1975).
  8. I Thomas, Selections illustrating the history of Greek mathematics II (London, 1941).

    Articles:

  9. G Deslauriers and S Dubuc, Le calcul de la racine cubique selon Héron, Elem. Math. 51 (1) (1996), 28-34.
  10. A G Drachmann, Fragments from Archimedes in Heron's Mechanics, Centaurus 8 (1963), 91-146.
  11. A G Drachmann, Heron and Ptolemaios, Centaurus 1 (1950), 117-131.
  12. M Federspiel, Sur un passage des 'Definitiones' du pseudo-Héron d'Alexandrie, Rev. Histoire Sci. Appl. 32 (2) (1979), 97-106.
  13. J Hoyrup, The position of Heron's formula in the Metrica (with a note about Plato) (Italian), Boll. Storia Sci. Mat. 17 (1) (1997), 3-11.
  14. P Keyser, A new look at Heron's 'steam engine', Arch. Hist. Exact Sci. 44 (2) (1992), 107-124.
  15. W R Knorr, 'Arithmêtikê stoicheiôsis' : on Diophantus and Hero of Alexandria, Historia Math. 20 (2) (1993), 180-192.
  16. J G Smyly, Square roots in Heron of Alexandria, Hermathena 63 (1944), 18-26.
  17. C M Taisbak, An Archimedean proof of Heron's formula for the area of a triangle; reconstructed, Centaurus 24 (1980), 110-116.
  18. C M Taisbak, Errata: An Archimedean proof of Heron's formula for the area of a triangle; reconstructed, Centaurus 25 (1-2) (1981/82), 160.
  19. Y Id and E S Kennedy, A medieval proof of Heron's formula, Math. Teacher 62 (1969), 585-587.